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In this section, we compare HBC with three state-of-the-art compression schemes 
to demonstrate its efficiency and universality. Meanwhile, ablation experiments are 
conducted to analyze the performance of the lossy compression algorithm VE-SCA at 
the upper layer and the lossless compression model EAOS at the lower layer.
Experiment 1：We compared the prediction performance of different supervised 
learning models. It can find that the MLP model are better than other models, and it 
can achieve a precision rate of 80% under 20% false positives rate. 
Experiment 2：We implement six compression schemes on one-dimensional data. 
The effect of HBC is the best among all compression schemes. As shown in Fig. 5, its 
average CR on six one-dimensional datasets is only 1.96%. 
Experiment 3：We evaluate the efficiency of six compression schemes. Among HBC, 
AMMMO, Chimp128, and LFZip, the compression efficiency of HBC is the best, and it 
can save 15%, 90% and 97% of the CT respectively. 
Experiment 4：We evaluate compression errors of HBC and LFZip on six one-
dimensional datasets. The compression error of HBC is greater than that of LFZip on 
most datasets. This is mainly because HBC adopts a dynamic error strategy, while 
LFZip adopts a unique minimum error strategy.

Data feature-aware lossless compression layer includes an Efficient Adaptive 
Offline Selector (EAOS) based on supervised learning, which can select the optimal 
lossless compression algorithm from the compression algorithm pool for D′. EAOS 
transforms the compression problem into a multi-classification problem of time series 
data. We formalize a piece of data into a set of data features with a label to obtain a 
training sample z, which can be expressed as z = (x, y), where x represents the feature 
vector of the data, namely x = (BIF, CT F, DT F, DSF), and y is the classification label 
of x: we use “0” ∼  “6” to represent the above seven compression methods, and the 
label is the final selected optimal algorithm. After a period of data sampling, we obtain 
the labelled training dataset, which can be used with supervised learning to train our 
EAOS.

Data compression is a key technology for time series data storage, but currently 
there are still the following challenges in this field.
Ø Traditional data compression strategies are not universal, and they cannot achieve 

optimal compression on datasets with different characteristics.
Ø In practical applications, users have different accuracy requirements for time series 

data in different numerical ranges. However, traditional data compression strategies 
implement undifferentiated compression with a uniform error threshold for all data.

Ø Current data compression strategies cannot achieve high compression ratios and 
low compression costs at the same time.

To address the current issues of low universality, low compression ratio, and high 
overhead in data compression, we design a Hybrid Bilayer Compression (HBC) 
framework. As shown in below figure, HBC includes a data accuracy-aware lossy 
compression layer and a data feature aware lossless compression layer. The 
framework adaptively adjusts the error value according to different data ranges to 
achieve efficient lossy compression, and further selects the optimal lossless 
compression strategy for the lossy compressed result.

At the top layer of the framework, we design a lightweight lossy compression 
algorithm called VE-SCA. It achieves data accuracy-aware lossy compression through 
piecewise fitting strategy and dynamic error adjustment strategy.

Segment Fitting Strategy: The segment 
f itt ing strategies mainly use a l inear 
function to represent a set of continuous 
data whose data fluctuation is less than 
the error threshold. We mainly implement 
a segment fitting strategy by constructing 
parallelogram. The parallelogram is 
constructed by four points whose upper 
and lower sides are ∆E away from the 
current data point and the previous stored 
data point, respectively. If the constructed 
parallelogram can completely contain all 
the points before the current point, then 
the  f i t t i ng  o f  th i s  segment  can  be 
continued. 

Dynamic Error Adjustment Strategy: We adjust the data error from two aspects. 
FIirst, we dynamically adjust the error threshold ∆E based on the different numerical 
ranges. Then, for the same numerical range, we fine-tune the error threshold ∆E 
based on the data fluctuation.
1) Error Adjustment for Different Numerical Ranges: According to the numerical 
ranges, we divide the data into several levels of accuracy: ACC1, ACC2, ACC3, · · · , 
ACCi. Then, we use different error threshold standards for different levels.  The 
above specific rules can be represented as Equation (4).

2) Error Adjustment for The Same Numerical Ranges: We further consider using data 
fluctuations to adjust the ACCi error threshold between ∆Emini and ∆Emaxi. The data 
fluctuation of time series data, denoted as K, can be represented as Equation (5), 
where FD is the fitting degree of the previous compression segment and FD′ is the 
other one. The so-called fitting degree refers to how many points can be fitted in a 
line segment fitting. Then, we use Equation (6) to slightly adjust ΔE within the error 
threshold for the corresponding accuracy level. Note that in Equation (6)， α is the 
acceptable threshold specified by the user, F(k) =  (K − 1)3 + 1.


