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MOTIVATION

Data compression is a key technology for time series data storage, but currently
there are still the following challenges in this field.

» Traditional data compression strategies are not universal, and they cannot achieve
optimal compression on datasets with different characteristics.

» In practical applications, users have different accuracy requirements for time series
data in different numerical ranges. However, traditional data compression strategies
Implement undifferentiated compression with a uniform error threshold for all data.

» Current data compression strategies cannot achieve high compression ratios and
low compression costs at the same time.

COMPRESSION FRAMEWORK — HBC

To address the current issues of low universality, low compression ratio, and high
overhead in data compression, we design a Hybrid Bilayer Compression (HBC)
framework. As shown in below figure, HBC includes a data accuracy-aware lossy
compression layer and a data feature aware lossless compression layer. The
framework adaptively adjusts the error value according to different data ranges to
achieve efficient lossy compression, and further selects the optimal lossless
compression strategy for the lossy compressed result.
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DATA ACCURACY-AWARE LOSSY COMPRESSION LAYER

At the top layer of the framework, we design a lightweight lossy compression
algorithm called VE-SCA. It achieves data accuracy-aware lossy compression through
piecewise fitting strategy and dynamic error adjustment strategy.

Segment Fitting Strategy: The segment
fitting strategies mainly use a linear
A function to represent a set of continuous
data whose data fluctuation is less than
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Dynamic Error Adjustment Strategy: We adjust the data error from two aspects.
Flirst, we dynamically adjust the error threshold AE based on the different numerical
ranges. Then, for the same numerical range, we fine-tune the error threshold AE
based on the data fluctuation.

1) Error Adjustment for Different Numerical Ranges: According to the numerical
ranges, we divide the data into several levels of accuracy: ACC,, ACC,, ACC,, - - -,
ACC,. Then, we use different error threshold standards for different levels. The
above specific rules can be represented as Equation (4).

2) Error Adjustment for The Same Numerical Ranges: We further consider using data
fluctuations to adjust the ACC,; error threshold between AEmin; and AEmax;. The data
fluctuation of time series data, denoted as K, can be represented as Equation (5),
where FD is the fitting degree of the previous compression segment and FD'is the
other one. The so-called fitting degree refers to how many points can be fitted in a
line segment fitting. Then, we use Equation (6) to slightly adjust AE within the error
threshold for the corresponding accuracy level. Note that in Equation (6), ais the
acceptable threshold specified by the user, F(k) = (K- 1)3 + 1.
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Fig. 4: Comparison of ROC indicators of different models.

DATA FEATURE-AWARE LOSSLESS COMPRESSION LAYER

Data feature-aware lossless compression layer includes an Efficient Adaptive
Offline Selector (EAOS) based on supervised learning, which can select the optimal
lossless compression algorithm from the compression algorithm pool for D'. EAOS
transforms the compression problem into a multi-classification problem of time series
data. We formalize a piece of data into a set of data features with a label to obtain a
training sample z, which can be expressed as z = (x, y), where x represents the feature
vector of the data, namely x = (BIF, CT F, DT F, DSF), and y is the classification label
of x. we use “0" ~ “6" to represent the above seven compression methods, and the
label is the final selected optimal algorithm. After a period of data sampling, we obtain

the labelled training dataset, which can be used with supervised learning to train our
EAOS.

Dimensions Feature Description
Drype The data type
Basic information Lsign The sign bit of the data
features Vitax The maximum values of the data
Vidin The minimum values of the data
Dy gean The mean of the data
Cent;:;hizgency D tedian The median of the data
Dhode The mode of the data
Dispersion tendency a The standard deviation of the data
features IQR The interquartile range of the data

VAT

Distribution shape Dyt The kurtosis coefficient of the data

features Do The skewness coefficient of the data

RESULITS

In this section, we compare HBC with three state-of-the-art compression schemes
to demonstrate its efficiency and universality. Meanwhile, ablation experiments are
conducted to analyze the performance of the lossy compression algorithm VE-SCA at
the upper layer and the lossless compression model EAOS at the lower layer.

Experiment 1: We compared the prediction performance of different supervised
learning models. It can find that the MLP model are better than other models, and it
can achieve a precision rate of 80% under 20% false positives rate.

Experiment 2: We implement six compression schemes on one-dimensional data.
The effect of HBC is the best among all compression schemes. As shown in Fig. 5, its
average CR on six one-dimensional datasets is only 1.96%.

Experiment 3: We evaluate the efficiency of six compression schemes. Among HBC,
AMMMO, Chimp128, and LFZip, the compression efficiency of HBC is the best, and it
can save 15%, 90% and 97% of the CT respectively.

Experiment 4: We evaluate compression errors of HBC and LFZip on six one-
dimensional datasets. The compression error of HBC is greater than that of LFZip on
most datasets. This is mainly because HBC adopts a dynamic error strategy, while
LFZip adopts a unique minimum error strategy.
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Fig. 5: Comparison of compression ratios for one-dimensional

TABLE V: Decompression time data.
5001 95, —+— HBC

HBC HBC_UP HBC_LOW LFZip AMMMO Chimpl28 <2 i [ ETES
Ser_Mer 2851  0.68 38.92 73896  33.66 123.74
Glo_Sat 1925  0.52 30.88 41935 2582 118.56
Pow_Con 3089 126 38.56 870.12 3449 130.42
Air Qua 1173 021 18.39 533.65  18.83 85.07
Hum_Act 1466  0.39 20.24 613.77 19.27 98.96
Hyd_Sys 1839 046 27.43 59258  25.58 94.21
Average 2057 059 29.07 62807 2628 108.49

TABLE IV: Compression time
HBC HBC_UP HBC_LOW LFZip AMMMO Chimpl28 0, &
¥ '.{9
Ser Mer 1339 029 28.52 725.41 1627 145.68 — 2 ~—
Glo_Sat 1176  0.10 23.21 46594  14.68 153.20 ‘O 7
Pow Con 19.85  0.56 30.74 94303 2322 139.14 o = o T 1 TR, ;
Air Qua 1346  0.08 19.05 61897 1202 107.31 er Mer  Glo_Sat  Pow_Con  Air Qua Hum_Act  Hyd Sys
Hum_Act 1453  0.14 22.53 560.47  13.85 112.65 ‘ ‘ _
Hyd Sys  9.00  0.17 17.96 64936 1588 12744 Fig. 7: Comparison of compression errors between HBC and
Average  13.66  0.23 23.67 660.53 15.99 130.90 :
LFZip.
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